Образовательный портал Павла Добряка

3.3. Задачи на теорию игр

Задача 3.3.1. Два игрока, Петя и Валя, иг­ра­ют в сле­ду­ю­щую игру. Перед ними лежат две кучки камней, в пер­вой из ко­то­рых 4, а во вто­рой - 3 камня. У каж­до­го иг­ро­ка не­огра­ни­чен­но много камней. Иг­ро­ки ходят по очереди, пер­вый ход де­ла­ет Петя. Ход со­сто­ит в том, что игрок или утра­и­ва­ет число кам­ней в какой-то куче, или до­бав­ля­ет 1 ка­мень в какую-то кучу. Игра за­вер­ша­ет­ся в тот момент, когда общее ко­ли­че­ство кам­ней в двух кучах ста­но­вит­ся не менее 20. Если в мо­мент за­вер­ше­ния игры общее число кам­ней в двух кучах не менее 35, то вы­иг­рал Валя, в про­тив­ном слу­чае - Петя. Кто вы­иг­ры­ва­ет при без­оши­боч­ной игре обоих игроков? Укажите стра­те­гию вы­иг­ры­ва­ю­ще­го иг­ро­ка - какой ход он дол­жен сде­лать в каж­дой из позиций, ко­то­рые могут ему встре­тить­ся при пра­виль­ной игре. Докажите, что опи­сан­ная стра­те­гия - выигрышная.

Задача 3.3.2. Два игрока, Петя и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу три камня или увеличить количество камней в куче в два раза. Игра завершается тогда, когда количество камней в куче становится ≥ 33. В начальный момент в куче было S камней: 1 ≤ S ≤ 32.

Задание 1. При каких S Петя выиграет своим первым ходом?

Задание 2. При каких S Валя выиграет своим первым ходом?

Задание 3. Назовите такие значения, при которых Петя выиграет своим вторым ходом независимо от игры Вали.

Задание 4. Назовите два таких значения S, при которых Валя выигрывает своим первым или вторым ходом.

 

Задача 3.3.3. Задание такое же, как и в предыдущей задаче. Ходы: +2, +3, *2.

Конец игры ≤ 30. В начальный момент в куче было S камней: 1 ≤ S ≤ 29.

 

Задача 3.3.4. Два игрока, Петя и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может (1) добавить в кучу один камень или (2) увеличить количество камней в куче в два раза или (3) увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 30 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 60 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 30 камней и Петя утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было камней, 1 ≤ S ≤ 35. 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при разной игре противника. 

Выполните следующие задания.

1. а) При каких значениях числа S Петя может выиграть в один ход? Укажите все такие значения и соответствующие ходы Пети.

б) У кого из игроков есть выигрышная стратегия при S = 31, 32, 33, 34? Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 11? Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 10? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.

 

Задача 3.3.5. Два игрока, Петя и Валя, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 55. Победителем считается игрок, сделавший последний ход, то есть этим ходом достигший 55 камней или более.

В начальный момент в первой куче было 5 камней, во второй 1 ≤ S ≤ 49  

Задание 1. Укажите все значения S, при которых Петя может выиграть за один ход.

Задание 2. Сколько существует значений S, при которых Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом?

Задание 3. Укажите такое значение S, при котором одновременно выполняются два условия:

у Вали есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

у Вали нет стратегии, которая позволит ему гарантированно выиграть первым ходом. 

 

Задача 3.3.6. Два игрока, Петя и Валя, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. 

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что в кучах всего будет 73 камня или больше.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при разной игре противника. Например, при начальных позициях (6, 34), (7, 33), (9, 32) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1. Для каждой из начальных позиций (6, 33), (8, 32) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2. Для каждой из начальных позиций (6, 32), (7, 32), (8, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

 

Задание 3. Для начальной позиции (7, 31) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.